Cincinnati Country Day School

AP Calculus BC Summer Packet

Directions: The AP Calculus BC curriculum consists of 10 total units, where most of the first 3 were covered in Pre-AP Calculus BC. This packet, which is due on the first day of class of the 2021-2022 school year, is a review of these first 3 units. Copy each problem onto a separate piece of paper and solve. Show your procedure, not just your answer. If you use a graph, you should show a properly labeled sketch of that graph.

Skill 1: Calculate limits.

1. Find the limit: 1 pts.

$$\lim_{x \to -3} \frac{x^2 - 9}{x^2 + x - 6}$$

- O A. 1
- B. 3/2
- O. C. 6/5
- D. -9
- O E. 3

2. Find the limit:

1 pts.
$$\lim_{x \to -\infty} \frac{8x^4 + 2x - 1}{5 + 7x - 2x^4}$$

-) A.
- B. 8/5
- O C. 4
- O D. ---
- © E. 1/2

Find the limit:

1 pts.
$$\lim_{x \to \infty} \frac{(2x+7)^2}{(3x-1)(4-x)}$$

- A. 4/3
- B. -4/3
- C. 2/3
- D. -2/3E. 1/3

4. Find the limit:

1 pts.

$$\lim_{x \to 4^+} \frac{3}{4 - x}$$

- A. Positive Infinity
- B. Negative Infinity
- O C. 0
- O D. 3/4
- O E. -3

5. Find the limit:

1 pts.

$$\lim_{x \to 7^{-}} \frac{2}{(x-7)^2}$$

- A. Positive Infinity
- B. Negative Infinity
- C. 2/49
- O D. 0

11. Find the limit: 1 pts.

$$\lim_{x \to 2} \frac{x-2}{x^2-4}$$

- O A. 2
- B.
- O C. 1/2
- O D. 1/4
- E.

12. Find the limit:

1 pts.

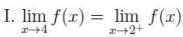
$$\lim_{x \to \infty} \frac{5 - 3x^5}{2x^5 + 7x - 1}$$

- A. 5/2
- B. -3/2
- O C. -5
- O D. 3
- E. Infinity

13. Find the limit:

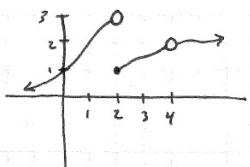
$$\lim_{x \to \infty} \frac{(5x-1)(x+2)(3x+2)}{(2x-3)^3}$$

- A. 5/2
- B. 15/2
- O C. 15/8


14. Find:

1 pts. $\lim_{x \to 5} \frac{x-5}{x}$

- A.
- B. 1/2
- O C. 7
- O D. 1/7

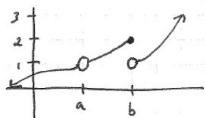

Skill 2: Find limits using a graph.

1. Consider the graph below. Which of the following statements are true? *1 pts.*

II.
$$\lim_{x\to 4^+}f(x)=\lim_{x\to 4^-}f(x)$$

III.
$$\lim_{x\to 2^-} f(x) = f(2)$$

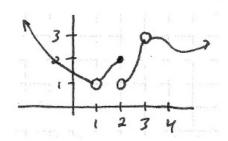
A.


II only

- B.
- III only
- C.
- I and II
- D.

I and III

E.


- II and III
- **2.** Consider the graph below. Which statement is false? *1 pts.*

- \circ A. f(a) does not exist
- \bigcirc B. $\lim_{x \to a^-} f(x) = 1$
- \circ C. $\lim_{x\to a} f(x)$ does not exist
- $\bigcup_{x \to b} f(x)$ does not exist
- f(b) = 2

3. 1 pts.

Referring to the graph below, if $\lim_{x\to c} f(x) = 1$, then what must c equal?

- A.
- B.

1

2

- O C.
- O D.
- E. r
 - none of the above

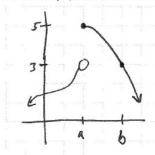
Skill 3: Identify asymptotes of functions.

4.

1 pts.

What kind of asymptote does $\lim_{x\to 5} f(x) = -\infty$ describe?

- A. Horizontal
- B. Vertical


6. Which function has a horizontal asymptote of y = 3? (THERE MAY BE MORE THAN ONE CORRECT 1 pts. ANSWER - SELECT ALL THAT APPLY) (Choose all that Apply)

- \square A. y = 3x
- \Box B. $y = e^x + 3$
- $y = \frac{-3x^2 + 5x 1}{6 x^2}$
- $y = \frac{x+3}{x+1}$

Skill 4: Determine the continuity of a function.

1. Consider the graph below. Which statement is false?

1 pts.

 \bigcap A. $\lim_{x\to a} f(x)$ does not exist

$$\ ^{\bigcirc \ }\operatorname{B.}\ \lim_{x\rightarrow b}f(x)=3$$

 \circ C. f is defined at x = a (This means that f(a) exists)

 \circ D. f is continuous at x = a

 \circ E. f is continuous at x = b

2. At what value(s) of x is the function below discontinuous?

1 pts.

$$f(x) = \frac{(x+1)^2(x-2)}{(x+1)(x-3)}$$

○ A. -1 only

B. 3 only

C. -1 and 3 only

D. -1, 2, and 3

 \bigcirc E. f is continuous for all values of x

3. 1 pts.

For what value of c is $f(x) = \begin{cases} 3x - 7 & \text{if } x \leq 1 \\ 2x + c & \text{if } x > 1 \end{cases}$ continuous?

○ A. -7

○ B. -6

O C. 1

O D. 3

O E. 8

Skill 5: Evaluate derivatives using basic rules.

1.

Given the function $f(x) = 2\sqrt[5]{x^6}$, find f'(x). Express your answer in radical form without using negative exponents, simplifying all fractions.

2.

For the following equation, find f'(x).

$$f(x) = 9x^4 - x^3 - 2$$

3.

For the following equation, evaluate f'(-1).

$$f(x) = -4x^5 + x^3 + x^2$$

4.

Given $f(x) = 2x^2 - x$, find the equation of the tangent line of f at the point where x = -3.

Skill 6: Evaluate derivatives using the product and quotient rules.

1.

Given the function $f(x) = 3x^2 - x^2 \cos x$, find f'(x) in any form.

2.

Given the function $f(x) = \sqrt{25x} \sin x$, find f'(x) in any form.

3.

Given the function $f(x) = \frac{3x^2}{4x^2+3}$, find f'(x) in simplified form.

4.

Given the function $y = \frac{5-x^3}{1-x}$, find $\frac{dy}{dx}$ in simplified form.

Skill 7: Evaluate derivatives using the chain rule.

1.

Given the function $y=4(x^2+9)^{\frac{3}{2}},$ find $\frac{dy}{dx}$

2.

Given the function $f(x) = -\sqrt{\cos x}$, find f'(x).

3.

Given the function $f(x)=3\cos\left[(2x^2+6)^5\right]$, find f'(x).

4.

Given $y=3\csc\left(2x\right)$, find $\frac{dy}{dx}$.

5.

Given the function $y=\sqrt[3]{rac{4x^3}{5+5x}},$ find $rac{dy}{dx}$

6.

Given the function $y = \cos(2x^3)\sin^4(x)$, find $\frac{dy}{dx}$

Skill 8: Use implicit differentiation to find derivatives.

1.

If $-y^3-4y^2+x^3=-4y$ then find $\frac{dy}{dx}$ in terms of x and y.

2.

If $2x^3 + 4xy = -y^3 + 5$ then find $\frac{dy}{dx}$ in terms of x and y.

3.

Given $\sin(x+y)=x^3$, find $\frac{dy}{dx}$ in terms of x and y.

4.

If $-4x + y^2 - xy = 0$ then find the equations of all tangent lines to the curve when x = 2.